In the world of Oracle EPM Cloud, data grids serve as the backbone for
interacting with multidimensional datasets. Whether you're querying data or
preparing it for analysis, the choice of grid definition builder can
significantly impact your productivity and script efficiency. Oracle EPM Cloud
provides two main tools for constructing these grids: DataGridDefinitionBuilder and FlexibleDataGridDefinitionBuilder.
In this blog, we’ll explore these two builders, dissect their features,
and help you decide which one suits your needs. Along the way, we’ll cover best
practices, showcase example scripts, and highlight why the flexibility of the FlexibleDataGridDefinitionBuilder often makes it the preferred choice for modern Oracle EPM applications.
What Are Data Grid Definitions?
A data grid definition is a blueprint that specifies a slice of data in a
multidimensional cube. Think of it as defining the axes of a table: rows,
columns, and a fixed context (POV). This definition is essential for both
querying and writing data in Oracle EPM.
Understanding
1. DataGridDefinitionBuilder
This is the traditional tool for constructing data grids. It requires
explicit specifications for all dimensions in the POV, rows, and columns.
Here’s a summary of its key characteristics:
- Explicit
Dimension Naming: You must explicitly
define which dimensions belong in the POV, columns, and rows.
- Detailed
Configuration: Requires precise member
selections for each dimension, making it slightly verbose for complex
grids.
- Limited
Features: Lacks advanced features like
member exclusion.
- Best
Use Cases:
- When working with small, simple cubes.
- When explicit control over every dimension is
essential.
DataGridDefinitionBuilder: Suppression Methods
The DataGridDefinitionBuilder class offers several methods to suppress unwanted data during grid construction:
setSuppressMissingBlocks(boolean
suppressMissingBlocks): Suppresses blocks that are
entirely missing, preventing the retrieval of empty data blocks.
setSuppressMissingRows(boolean
suppressMissingRows): Suppresses rows with missing data,
ensuring only populated rows are included.
setSuppressMissingColumns(boolean
suppressMissingColumns): Suppresses columns with
missing data, including only those with actual data.
setSuppressInvalidRows(boolean
suppressInvalidRows): Suppresses rows containing invalid
data, filtering out rows that don't meet validation criteria.
setSuppressInvalidColumns(boolean
suppressInvalidColumns): Suppresses columns with
invalid data, ensuring only valid data columns are retrieved.
setSuppressInvalidScenarioTps(boolean
suppressInvalidScenarioTps):
Suppresses invalid scenario time periods, excluding data from invalid time
periods.
setSuppressMissingRowsNative(boolean
suppressMissingRowsNative): Suppresses missing rows at
the native level, enhancing performance by excluding missing rows earlier in
the data retrieval process.
setSuppressMissingSuppressesZero(boolean
suppressMissingSuppressesZero):
Determines whether suppressing missing data also suppresses zeros, allowing for
more refined data suppression based on specific requirements.
2. FlexibleDataGridDefinitionBuilder
As its name suggests, this builder offers more flexibility. It simplifies
grid construction and introduces advanced capabilities:
- Dimension
Deduction: Automatically deduces dimension
names based on provided members.
- Streamlined
Syntax: Supports variable arguments
(varargs) for defining rows and columns, resulting in more concise and
readable code.
- Exclusion
Features: Allows excluding specific
members or sets, making it ideal for dynamic data handling.
- Enhanced
Usability: Provides more intuitive methods
and supports modern scripting best practices.
- Best
Use Cases:
- Large, complex cubes with many dimensions.
- Scenarios requiring dynamic member exclusions or
inclusions.
FlexibleDataGridDefinitionBuilder:
Suppression Methods
The FlexibleDataGridDefinitionBuilder
class provides similar suppression capabilities, allowing for efficient data
retrieval:
setSuppressMissingBlocks(boolean
suppressMissingBlocks): Suppresses entirely missing
blocks, preventing the retrieval of empty data blocks.
setSuppressMissingRows(boolean
suppressMissingRows): Suppresses rows with missing data,
ensuring only populated rows are included.
setSuppressMissingColumns(boolean
suppressMissingColumns): Suppresses columns with
missing data, including only those with actual data.
setSuppressInvalidRows(boolean
suppressInvalidRows): Suppresses rows containing invalid
data, filtering out rows that don't meet validation criteria.
setSuppressInvalidColumns(boolean
suppressInvalidColumns): Suppresses columns with
invalid data, ensuring only valid data columns are retrieved.
setSuppressInvalidScenarioTps(boolean
suppressInvalidScenarioTps):
Suppresses invalid scenario time periods, excluding data from invalid time
periods.
setSuppressMissingRowsNative(boolean
suppressMissingRowsNative): Suppresses missing rows at
the native level, enhancing performance by excluding missing rows earlier in
the data retrieval process.
setSuppressMissingSuppressesZero(boolean
suppressMissingSuppressesZero):
Determines whether suppressing missing data also suppresses zeros, allowing for
more refined data suppression based on specific requirements.
Key Differences
Feature |
DataGridDefinitionBuilder |
FlexibleDataGridDefinitionBuilder |
Dimension Handling |
Requires explicit dimension names |
Deduces dimensions automatically |
Syntax Complexity |
More verbose |
Cleaner and more concise |
Exclusion Support |
Not supported |
Allows exclusion of specific members |
Usability |
Requires detailed knowledge of cube |
Easier to use with dynamic datasets |
Use Cases |
Static, simple grids |
Dynamic, complex grids |
Examples in Action
Example 1: Using
DataGridDefinitionBuilder
Cube cube = operation.application.getCube('Plan1')
// Create a DataGridDefinitionBuilder
DataGridDefinitionBuilder builder = cube.dataGridDefinitionBuilder()
// Set the dimensions for POV, rows, and columns
builder.setPovDimensions(['Scenario', 'Version', 'Currency'])
builder.setRowDimensions(['Entity'])
builder.setColumnDimensions(['Account', 'Period'])
// Define the POV, rows, and columns
builder.setPov(['Actual', 'Working', 'USD'])
builder.addRow(['Total Entities'])
builder.addColumn(['Net Income', 'Jan'])
// Add suppression options
builder.setSuppressMissingBlocks(true) // Exclude missing blocks
builder.setSuppressMissingRows(true) // Exclude rows with no data
builder.setSuppressMissingColumns(true) // Exclude columns with no data
builder.setSuppressInvalidRows(true) // Exclude invalid rows
builder.setSuppressInvalidColumns(true) // Exclude invalid columns
builder.setSuppressInvalidScenarioTps(true) // Exclude invalid scenario time periods
// Load and process the grid
cube.loadGrid(builder.build(), false).withCloseable { grid ->
grid.dataCellIterator().each {
cell ->
// Print the data in each
cell
println "Data:
${cell.data}"
}
}
- Pros: Offers granular control.
- Cons: Verbose and rigid, especially for large cubes.
Example 2: Using
FlexibleDataGridDefinitionBuilder
Cube cube =
operation.application.getCube('Plan1')
- Pros: Simplified syntax, exclusion support.
- Cons: Slight learning curve for advanced features.
// Create a
FlexibleDataGridDefinitionBuilder
FlexibleDataGridDefinitionBuilder
builder = cube.flexibleDataGridDefinitionBuilder()
// Set the Point of View (POV) for the
grid
builder.setPov('Actual', 'USD',
'BegBalance', 'BU Version_1', 'FY22')
// Add columns and rows for the grid
builder.addColumn('ILvl0Descendants(Employee)')
builder.addRow('ILvl0Descendants(USA)',
'Price', 'Units Sold')
// Exclude specific members
builder.setExclude('Units Sold')
// Add suppression options
builder.setSuppressMissingBlocks(true) // Exclude entirely missing blocks
builder.setSuppressMissingRows(true) // Exclude rows with no data
builder.setSuppressMissingColumns(true) // Exclude columns with no data
builder.setSuppressInvalidRows(true) // Exclude invalid rows
builder.setSuppressInvalidColumns(true) // Exclude invalid columns
builder.setSuppressInvalidScenarioTps(true) // Exclude invalid scenario time periods
// Load and process the grid
cube.loadGrid(builder.build(),
false).withCloseable { grid ->
grid.dataCellIterator().each { cell ->
// Print the data in each cell
println "Data: ${cell.data}"
}
}
Best Practices
- Prefer
FlexibleDataGridDefinitionBuilder: Its
flexibility and advanced features make it ideal for most scenarios.
- Suppress
Missing Data: Use suppression methods to
exclude missing or irrelevant data blocks, improving efficiency.
- Streamline
Syntax: Leverage varargs and dimension
deduction in FlexibleDataGridDefinitionBuilder for cleaner scripts.
- Handle
Errors Gracefully: Always implement robust
error handling using throwVetoException() or similar methods.
Conclusion
While both DataGridDefinitionBuilder and FlexibleDataGridDefinitionBuilder
serve the same foundational purpose, the latter's modern features and
streamlined syntax make it a superior choice for most use cases. Whether you’re
dealing with large, complex cubes or need dynamic data handling, FlexibleDataGridDefinitionBuilder
is your go-to tool.
By understanding their differences and leveraging their strengths, you
can master data grid definitions in Oracle EPM Cloud, streamline your
workflows, and enhance your business rule capabilities.
Ready to elevate your EPM scripting game? Start exploring FlexibleDataGridDefinitionBuilder
today and experience its power firsthand!
No comments:
Post a Comment